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Abstract
We present explicit conjectures for the chiral fusion algebras of the logarithmic
minimal models LM(p, p′) considering Virasoro representations with no
enlarged or extended symmetry algebra. The generators of fusion are countably
infinite in number but the ensuing fusion rules are quasi-rational in the sense
that the fusion of a finite number of representations decomposes into a finite
direct sum of representations. The fusion rules are commutative, associative
and exhibit an s�(2) structure but require so-called Kac representations which
are typically reducible yet indecomposable representations of rank 1. In
particular, the identity of the fundamental fusion algebra p �= 1 is a reducible yet
indecomposable Kac representation of rank 1. We make detailed comparisons
of our fusion rules with the results of Gaberdiel and Kausch for p = 1 and with
Eberle and Flohr for (p, p′) = (2, 5) corresponding to the logarithmic Yang–
Lee model. In the latter case, we confirm the appearance of indecomposable
representations of rank 3. We also find that closure of a fundamental fusion
algebra is achieved without the introduction of indecomposable representations
of rank higher than 3. The conjectured fusion rules are supported, within our
lattice approach, by extensive numerical studies of the associated integrable
lattice models. Details of our lattice findings and numerical results will be
presented elsewhere. The agreement of our fusion rules with the previous
fusion rules lends considerable support for the identification of the logarithmic
minimal modelsLM(p, p′) with the augmented cp,p′ (minimal) models defined
algebraically.

PACS numbers: 11.25.Hf, 64.60.De

1. Introduction

Since the seminal work of Gaberdiel and Kausch [1], steady progress has been made in
understanding the fusion algebras of logarithmic conformal field theories (CFTs) [2, 3]. Three
key approaches to these problems are the algebraic, supergroup and lattice approaches. Within
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the algebraic approach, the so-called augmented cp,p′ (minimal) models, with p, p′ coprime
integers, have been extensively studied. These logarithmic theories are characterized directly
by algebraic properties of the CFT. Initially, work focused [1] on the case p = 1 but recently
Eberle and Flohr [4] extended the application of the Nahm algorithm [5] to obtain fusion
rules level by level for some p > 1. Nevertheless, it seems fair to say that knowledge in the
general case remains limited. The supergroup approach originated with Rozansky and Saleur
[6] but has since been pursued by other authors as well, see [7] and references therein. In
this approach, reducible yet indecomposable representations arise somewhat automatically as
a consequence of the supergroup structure. The lattice approach underlying the present work
was initiated in [8]. Within this approach, the logarithmic minimal models LM(p, p′) are
defined as CFTs via the continuum scaling limit of a series of Yang–Baxter integrable lattice
models. The lattice approach has the advantage of being firmly rooted in physical origins but
the disadvantage that the algebraic properties of the resulting CFTs are not readily accessible.

It would appear natural to identify the cp,p′ and LM(p, p′) models and to expect these
theories to play the same role for logarithmic CFTs that the usual minimal models [9] do for
rational CFTs. Indeed, based on the comparison of conformal data and fusion rules, it seems
that the first members of these series with (p, p′) = (1, 2), (2, 3) corresponding to critical
dense polymers [10] and critical percolation [11], respectively, do in fact coincide. In general,
however, care needs to be exercised. For rational CFTs, there is a precise axiomatic definition
[12] of a rational CFT. In practice, this means that these theories can be classified by a certain set
of data such as the central charge, conformal weights, characters of irreducible representations,
modular invariant partition functions on the torus and operator-product expansions. In contrast,
as of now, no such general theory exists for logarithmic CFTs. In contrast, at least in principle,
it is possible for example for two logarithmic CFTs to share the same basic set of conformal
data but to differ in the detailed structure of their indecomposable representations.

In this paper, we consider the fusion algebras of the general logarithmic minimal models
LM(p, p′) and make explicit conjectures for their chiral fusion algebras. These fusion rules
generalize our recent results [11] for critical percolation LM(2, 3). The generators of fusion
are countably infinite in number but the ensuing fusion rules are quasi-rational [5] in the sense
that the fusion of a finite number of representations decomposes into a finite direct sum of
representations. The conjectured fusion rules are commutative, associative and exhibit an
s�(2) structure at the level of characters. We make detailed comparisons of our fusion rules
with the previous results of Gaberdiel and Kausch [1] for p = 1 and with Eberle and Flohr
[4] for (p, p′) = (2, 5) corresponding to the logarithmic Yang–Lee model. In the latter case,
we confirm that indecomposable representations of rank 3 arise as the result of certain lower
rank fusions. We also find that closure of a fundamental fusion algebra is achieved without the
introduction of indecomposable representations of rank higher than 3. In general, the identity
of the fundamental fusion algebra of LM(p, p′) is a reducible yet indecomposable so-called
Kac representation of rank 1. The conjectured fusion rules are supported, within our lattice
approach, by extensive numerical studies of the associated integrable lattice models. Details
of our lattice findings and numerical results will be presented elsewhere. The agreement of
our results with previous results from the algebraic approach lends considerable support for
the supposition that the logarithmic CFTs cp,p′ and LM(p, p′) should be identified.

2. Representations of LM(p, p′)

A logarithmic minimal model LM(p, p′) is defined [8] for every coprime pair of positive
integers p < p′. The model LM(p, p′) has central charge
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c = 1 − 6
(p′ − p)2

pp′ (2.1)

and conformal weights

�r,s = (rp′ − sp)2 − (p′ − p)2

4pp′ , r, s ∈ N. (2.2)

The set of distinct values for the conformal weights is

Sp,p′ = {�r,s; 1 � r; 1 � s � p′; 0 � rp′ − sp}
= {�r,s; 1 � r � p; 1 � s; 0 � sp − rp′}. (2.3)

This follows straightforwardly from the algebraic identities

�r+kp,s+kp′ = �−r+�p,−s+�p′ = �r,s, k, � ∈ Z (2.4)

and the fact that �r,s �= �r+kp,s and �r,s �= �r,s+kp′ for 0 �= k ∈ Z.

2.1. Irreducible characters

There is a unique irreducible (highest-weight) representation of conformal weight �r,s . It is
denoted by V(�r,s) while its character is denoted by

chr,s(q) = χ [V(�r,s)](q). (2.5)

As we will see, though, only a subset of these irreducible representations appears in the present
context while all the irreducible characters do. With r0 = 1, 2, . . . , p−1, s0 = 1, 2, . . . , p′−1
and k ∈ N − 1, these irreducible characters read [13]

chr0+kp,s0(q) = K2pp′,(r0+kp)p′−s0p;k(q) − K2pp′,(r0+kp)p′+s0p;k(q)

chr0+(k+1)p,p′(q) = 1

η(q)

(
q(kp+r0)

2p′/4p − q((k+2)p−r0)
2p′/4p

)
(2.6)

ch(k+1)p,s0(q) = 1

η(q)

(
q((k+1)p′−s0)

2p/4p′ − q((k+1)p′+s0)
2p/4p′)

ch(k+1)p,p′(q) = 1

η(q)

(
qk2pp′/4 − q(k+2)2pp′/4

)
.

Here Kn,ν;k(q) is defined as

Kn,ν;k(q) = 1

η(q)

∑
j∈Z\{1,...,k}

q(ν−jn)2/2n, (2.7)

while the Dedekind eta function is given by

η(q) = q1/24
∞∏

m=1

(1 − qm). (2.8)

It follows that for k = 0, the first expression in (2.6) reduces to the well-known irreducible
character

chr0,s0(q) = K2pp′,r0p′−s0p(q) − K2pp′,r0p′+s0p(q), Kn,ν(q) = 1

η(q)

∑
j∈Z

q(ν+jn)2/2n. (2.9)
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2.2. Kac representations

From the lattice, a representation (r, s), which we call a Kac representation, arises for every
pair of integer Kac labels r, s in the first quadrant of the infinitely extended Kac table, see
figure 1. This relaxes the constraint r = 1, 2, . . . , p considered in [8]. The lattice description
of the full set of Kac representations will be discussed in detail elsewhere. The conformal
character of the Kac representation (r, s) is given by

χr,s(q) = q
1−c
24 +�r,s

η(q)
(1 − qrs) = 1

η(q)

(
q(rp′−sp)2/4pp′ − q(rp′+sp)2/4pp′)

(2.10)

corresponding to the Virasoro character of the quotient module Vr,s/Vr,−s of the two highest-
weight Verma modules Vr,s = V�r,s

and Vr,−s = V�r,−s
. A priori, a Kac representation can be

either irreducible or reducible. We will only characterize the Kac representations appearing
in the fusion algebras to be discussed in the present work.

Among these are the irreducible Kac representations

{(r, kp′), (kp, s); r = 1, 2, . . . , p; s = 1, 2, . . . , p′; k ∈ N}. (2.11)

Since their characters all correspond to irreducible Virasoro characters, these Kac
representations must indeed themselves be irreducible. Set (2.11) constitutes an exhaustive
list of irreducible Kac representations. Two Kac representations are naturally identified if they
have identical conformal weights and are both irreducible. The relations

(kp, p′) = (p, kp′) (2.12)

are the only such identifications. More general relations are considered in (4.5) and (4.6).
For now, we simply point out that two Kac characters (2.10) are equal χr,s(q) = χr ′,s ′(q) if
and only if (r ′, s ′) = (r, s) or (r ′, s ′) = (sp/p′, rp′/p). That is, the only equalities between
Kac characters are of the form χkp,k′p′(q) = χk′p,kp′(q). According to (4.6), a similar equality
applies to the Kac representations themselves: (kp, k′p′) = (k′p, kp′).

Somewhat redundantly, we also encounter fully reducible Kac representations

{(kp, k′p′); k, k′ ∈ N + 1}. (2.13)

Since they decompose into direct sums of irreducible representations, cf (4.5), they only enter
the fusion analysis in intermediate steps.

Finally, the Kac representations

{(r0, s0); r0 = 1, 2, . . . , p − 1; s0 = 1, 2, . . . , p′ − 1} (2.14)

are reducible yet indecomposable representations of rank 1. It is noted that these
representations occupy the lower left corner of the infinitely extended Kac table corresponding
to the Kac table of the rational cousin of LM(p, p′)—the minimal model characterized by
p, p′. One may view these reducible yet indecomposable representations as ‘logarithmic
replacements’ of the irreducible representations associated with the rational Kac table. As
discussed in [4, 11] in the case of critical percolation LM(2, 3), representations (2.14) can be
viewed also as subrepresentations of certain indecomposable representations of rank 2. In the
general case, these indecomposable representations are denoted by R0,p′−s0

r0,p′ and Rp−r0,0
p,s0 in the

following. These and all other indecomposable representations of higher rank appearing in
our fusion analysis will be discussed below.

The indecomposable representations of higher rank may be described in terms of Kac
representations and their characters. We therefore list the decompositions of the relevant Kac
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Figure 1. Extended Kac tables of conformal weights �r,s for critical dense polymers LM(1, 2),
critical percolation LM(2, 3), the logarithmic Ising LM(3, 4) and logarithmic Yang–Lee
LM(2, 5) models. In general, the entries relate to distinct Kac representations even if the conformal
weights coincide. For a given model, an irreducible representation exists for each unique conformal
weight appearing in the Kac table. The Kac representations which also happen to be irreducible
representations are marked with a shaded quadrant in the top-right corner. These do not exhaust
the distinct values of the conformal weights. The periodicity �r,s = �r+p,s+p′ is made manifest
by the shading of the rows and columns.
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characters in terms of irreducible characters

χpk−r0,s0(q) = chpk−r0,s0(q) + chpk+r0,s0(q)

χpk−r0,p′(q) = chpk−r0,p′(q) + (1 − δk,1)chpk+r0,p′(q)

χpk+r0,p′+s0(q) = chp(k−1)+r0,s0(q) + chpk+r0,p′−s0(q) + chp(k+1)−r0,s0(q) + chp(k+1)+r0,s0(q)

+ chp(k+2)−r0,p′−s0(q) + chp(k+3)−r0,s0(q)

χr0,kp′−s0(q) = chr0,p′k−s0(q) + chr0,p′k+s0(q)

χp,p′k−s0(q) = chp,p′k−s0(q) + (1 − δk,1)chp,p′k+s0(q)

χp+r0,p′k+s0(q) = chr0,p′(k−1)+s0(q) + chp−r0,p′k+s0(q) + chr0,p′(k+1)−s0(q) + chr0,p′(k+1)+s0(q)

+ chp−r0,p′(k+2)−s0(q) + chr0,p′(k+3)−s0(q), (2.15)

where r0 = 1, 2, . . . , p − 1 and s0 = 1, 2, . . . , p′ − 1, whereas k ∈ N. The decomposition of
a general Kac character χr,s(q) into irreducible characters is discussed in the appendix of [8].

2.3. Indecomposable representations of rank 2 or 3

From the lattice analysis, we infer that the logarithmic minimal model LM(p, p′) contains
indecomposable representations of rank 2 and for p > 1 also indecomposable representations
of rank 3. For a, r0 = 1, 2, . . . , p − 1 and b, s0 = 1, 2, . . . , p′ − 1 as well as
k ∈ N, the representations denoted by Ra,0

pk,s0
,Ra,0

pk,p′ ,R0,b
r0,p′k and R0,b

p,p′k are indecomposable

representations of rank 2, while Ra,b
pk,p′ is an indecomposable representation of rank 3. Their

characters read

χ
[
Ra,0

pk,s0

]
(q) = χpk−a,s0(q) + χpk+a,s0(q) = chpk−a,s0(q) + 2chpk+a,s0(q) + chp(k+2)−a,s0(q)

χ
[
Ra,0

pk,p′
]
(q) = χpk−a,p′(q) + χpk+a,p′(q) = (1 − δk,1)chpk−a,p′(q) + 2chpk+a,p′(q)

+ chp(k+2)−a,p′(q)

χ
[
R0,b

r0,p′k
]
(q) = χr0,p′k−b(q) + χr0,p′k+b(q) = chr0,p′k−b(q) + 2chr0,p′k+b(q)

+ chr0,p′(k+2)−b(q)

χ
[
R0,b

p,p′k
]
(q) = χa,3k−b(q) + χa,3k+b(q) = (1 − δk,1)chp,p′k−b(q) + 2chp,p′k+b(q)

+ chp,p′(k+2)−b(q)

χ
[
Ra,b

pk,p′
]
(q) = χpk−a,p′−b(q) + χpk−a,p′+b(q) + χpk+a,p′−b(q) + χpk+a,p′+b(q)

= (1 − δk,1)chp(k−1)−a,b(q) + 2chp(k−1)+a,b(q) + 2(1 − δk,1)chpk−a,p′−b(q)

+ 4chpk+a,p′−b(q) + (2 − δk,1)chp(k+1)−a,b(q) + 2chp(k+1)+a,b(q)

+ 2chp(k+2)−a,p′−b(q) + chp(k+3)−a,b(q)

= (1 − δk,1)cha,p′(k−1)−b(q) + 2cha,p′(k−1)+b(q) + 2(1 − δk,1)chp−a,p′k−b(q)

+ 4chp−a,p′k+b(q) + (2 − δk,1)cha,p′(k+1)−b(q) + 2cha,p′(k+1)+b(q)

+ 2chp−a,p′(k+2)−b(q) + cha,p′(k+3)−b(q) (2.16)

indicating that one may consider these indecomposable representations as ‘indecomposable
combinations’ of Kac representations. The participating Kac representations are of course
the ones whose characters appear in (2.16). In the case of the indecomposable representation
Ra,0

pk,s (or R0,b
r,p′k) of rank 2, our lattice analysis indicates that a Jordan cell is formed between

every state in chpk+a,s(q) (or chr,p′k+b(q)) and its partner state in the second copy of chpk+a,s(q)

(or chr,p′k+b(q)), and nowhere else. In the case of the indecomposable representation Ra,b
pk,p′ of

rank 3, our lattice analysis indicates that for every quartet of matching states in the four copies
of chpk+a,p′−b(q) = chp−a,p′k+b(q), a rank-3 Jordan cell is formed along with a single state.
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It likewise appears that a Jordan cell of rank 2 is formed between every pair of matching states
in the irreducible components with multiplicity 2.

The notation Ra,b
r,s is meant to reflect simple properties of the higher rank indecomposable

representations. The pair of lower indices r, s thus refers to a ‘symmetry point’ in the Kac
table around which an indecomposable combination of Kac representations is located. The
pair of upper indices a, b indicates the distribution of these representations of which there are
either two (if a = 0 or b = 0) or four (if a, b �= 0). Their locations correspond to endpoints
or corners, respectively, of a line segment or a rectangle with centre at (r, s). This structure is
encoded neatly in the character expressions (2.16). Setting

R0,0
pk,p′k′ = (pk, p′k′), (2.17)

the representation Ra,b
pk,p′k′ thus has rank d + 1 = 1, 2, 3 if, in the Kac table, it corresponds to

the corners of a d-dimensional rectangle with centre at (pk, p′k′), width 2a and height 2b.

3. Fundamental component fusion algebra of LM(p, p′)

The fundamental fusion algebra

〈(2, 1), (1, 2)〉p,p′ (3.1)

is defined as the fusion algebra generated by the fundamental Kac representations (2, 1) and
(1, 2). It follows from the lattice description that the fundamental fusion algebra is both
associative and commutative. It also follows from the lattice that the fusion algebra may
be described by separating the representations into a horizontal and a vertical part. Before
discussing implications of this, we examine the two directions separately. That is, we initially
consider the horizontal fusion algebra

〈(2, 1)〉p,p′ = 〈
(r0, 1), (pk, 1),Ra,0

pk,1; r0, a = 1, 2, . . . , p − 1; k ∈ N
〉
p,p′ (3.2)

and the vertical fusion algebra

〈(1, 2)〉p,p′ = 〈
(1, s0), (1, p′k),R0,b

1,p′k; s0, b = 1, 2, . . . , p′ − 1; k ∈ N
〉
p,p′ (3.3)

in their own right. By abbreviating the set of representations
{
(r0, 1), (pk, 1),Ra,0

pk,1

}
by{

(r0), (pk),Ra
pk

}
and similarly

{
(1, s0), (1, p′k),R0,b

1,p′k
}

by
{
(s0), (p

′k),Rb
p′k

}
, this can be

done in one go. Despite the following choice of dummy variables in these abbreviations, this
notation can represent either direction, and the ensuing fusion algebra

〈(2)〉p = 〈
(r0), (pk) = R0

pk,Ra
pk; r0, a = 1, 2, . . . , p − 1; k ∈ N

〉
p

(3.4)

will henceforth be referred to as the fundamental component fusion algebra of order p. To
unify the notation, we have introduced

R0
pk = (pk) (3.5)

and will use the notation

(−r) ≡ −(r), Ra
−r ≡ −Ra

r (3.6)

implying, in particular, that (0) ≡ Ra
0 ≡ 0. Following [11], we also introduce the Kronecker

delta combinations

δ
(2)
j,{n,n′} = 2 − δj,|n−n′| − δj,n+n′

δ
(4)
j,{n,n′} = 4 − 3δj,|n−n′ |−1 − 2δj,|n−n′ | − δj,|n−n′ |+1 − δj,n+n′−1 − 2δj,n+n′ − 3δj,n+n′+1

δ
(8)
j,{n,n′} = 8 − 7δj,|n−n′ |−2 − 6δj,|n−n′ |−1 − 4δj,|n−n′ | − 2δj,|n−n′ |+1 − δj,|n−n′ |+2

− δj,n+n′−2 − 2δj,n+n′−1 − 4δj,n+n′ − 6δj,n+n′+1 − 7δj,n+n′+2.

(3.7)



13718 J Rasmussen and P A Pearce

For a, a′, r0, r
′
0 = 1, 2, . . . , p − 1, our conjecture for the fusion rules of the fundamental

component fusion algebra of order p is

(r0) ⊗ R0
pn =

	 r0−1
2 
⊕

i=0

Rr0−1−2i
pn

R0
pn ⊗ R0

pn′ =
n+n′−1⊕

j=|n−n′ |+1,by 2

⎧⎨
⎩

	 p−1
2 
⊕

i=0

Rp−1−2i

pj

⎫⎬
⎭

R0
pn ⊗ Ra′

pn′ =

⎛
⎜⎝

n+n′⊕
j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

⎧⎪⎨
⎪⎩

	 a′−1
2 
⊕

i=0

Ra′−1−2i
pj

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⊕

⎛
⎜⎝

n+n′−1⊕
j=|n−n′ |+1,by 2

2

⎧⎪⎨
⎪⎩

	 p−a′−1
2 
⊕

i=0

Rp−a′−1−2i

pj

⎫⎪⎬
⎪⎭

⎞
⎟⎠ , (3.8)

where for r0 + r ′
0, r0 + a, a + a′ � p

(r0) ⊗ (r ′
0) =

r0+r ′
0−1⊕

j=|r0−r ′
0|+1,by 2

(j)

(r0) ⊗ Ra
pn =

⎧⎨
⎩

min{r0−1,	 r0+a−1
2 
}⊕

i=0

Rr0+a−1−2i
pn

⎫⎬
⎭ ⊕

⎧⎨
⎩

	 r0−a−1
2 
⊕

i=0

Rr0−a−1−2i
pn

⎫⎬
⎭

Ra
pn ⊗ Ra′

pn′ =

⎛
⎜⎝

n+n′⊕
j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

⎧⎪⎨
⎪⎩

⎛
⎜⎝

	 |a−a′ |−1
2 
⊕

i=0

R|a−a′|−1−2i

pj

⎞
⎟⎠ ⊕

⎛
⎜⎝

	 a+a′−1
2 
⊕

i=0

Ra+a′−1−2i
pj

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⊕

⎛
⎜⎝

n+n′−1⊕
j=|n−n′ |+1,by 2

2

⎧⎪⎨
⎪⎩

⎛
⎜⎝

	 p−|a−a′ |−1
2 
⊕

i=0

Rp−|a−a′ |−1−2i

pj

⎞
⎟⎠ ⊕

⎛
⎜⎝

	 p−a−a′−1
2 
⊕

i=0

Rp−a−a′−1−2i

pj

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠ ,

(3.9)

while for r0 + r ′
0, r0 + a, a + a′ > p

(r0) ⊗ (r ′
0) =

⎛
⎝ 2p−r0−r ′

0−1⊕
j=|r0−r ′

0|+1,by 2

(j)

⎞
⎠ ⊕

⎧⎪⎨
⎪⎩

	 r0+r′0−p−1

2 
⊕
i=0

Rr0+r ′
0−p−1−2i

p

⎫⎪⎬
⎪⎭

(r0) ⊗ Ra
pn =

⎧⎨
⎩

	 r0+a−p−1
2 
⊕

i=0

(
Rr0+a−p−1−2i

pn−p ⊕ Rr0+a−p−1−2i
pn+p

)⎫⎬
⎭

⊕
⎧⎨
⎩

min{p−a−1,	 2p−r0−a−1
2 
}⊕

i=0

R2p−r0−a−1−2i
pn

⎫⎬
⎭ ⊕

⎧⎨
⎩

	 r0−a−1
2 
⊕

i=0

Rr0−a−1−2i
pn

⎫⎬
⎭

Ra
pn ⊗ Ra′

pn′ =

⎛
⎜⎝

n+n′+1⊕
j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}

⎧⎪⎨
⎪⎩

	 a+a′−p−1
2 
⊕

i=0

Ra+a′−p−1−2i

pj

⎫⎪⎬
⎪⎭

⎞
⎟⎠
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⊕

⎛
⎜⎝

n+n′⊕
j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

⎧⎪⎨
⎪⎩

⎛
⎜⎝

	 |a−a′ |−1
2 
⊕

i=0

R|a−a′|−1−2i

pj

⎞
⎟⎠ ⊕

⎛
⎜⎝

	 2p−a−a′−1
2 
⊕

i=0

R2p−a−a′−1−2i

pj

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2

⎧⎨
⎩

p−max{a,a′}−1⊕
i=0

Rp−|a−a′ |−1−2i

pj

⎫⎬
⎭

⎞
⎠ . (3.10)

These expressions can of course be combined into more condensed but less transparent
expressions, which are not included here. Particular subalgebras, though, of these fundamental
component fusion algebras are written out and simplified in appendix A.

4. Fundamental fusion algebra of LM(p, p′)

We find that closure of the fundamental fusion algebra (3.1) requires the inclusion of the many
various representations discussed above

〈(2, 1), (1, 2)〉p,p′ = 〈
(r0, s0), (pk, s0), (r0, p

′k), (pk, p′),

Ra,0
pk,s0

,Ra,0
pk,p′ ,R0,b

r0,p′k,R
0,b
p,p′kR

a,b
pk,p′

〉
p,p′ , (4.1)

where r0, a = 1, 2, . . . , p − 1 and s0, b = 1, 2, . . . , p′ − 1, whereas k ∈ N. According to
(2.12) and (4.6) below, (pk, p′) = (p, p′k) and Ra,b

pk,p′ = Ra,b
p,p′k , restoring the apparent lack

of symmetry in list (4.1).
In the following, we will discuss how this fundamental fusion algebra may be obtained by

combining two fundamental component fusion algebras of order p and p′, respectively, and
present explicit examples and comparisons with the literature. To compactify the fusion rules,
we will use the notation

(r,−s) ≡ (−r, s) ≡ −(r, s), Ra,b
−r,s ≡ Ra,b

r,−s ≡ −Ra,b
r,s (4.2)

implying, in particular, that (0, s) ≡ (r, 0) ≡ Ra,b
0,s ≡ Ra,b

r,0 ≡ 0.

4.1. Decomposition into horizontal and vertical fusion

With a = 0, 1, . . . , p − 1 and b = 0, 1, . . . , p′ − 1, we introduce the representations

Ra,b
pk,p′k′ = Ra,0

pk,1 ⊗ R0,b
1,p′k′ (4.3)

thus defined as simple fusions of ‘a horizontal and a vertical representation’. Combining these
with the associativity and commutativity of the fusion rules results in a separation of fusion
itself into a horizontal and a vertical part. We illustrate this with a general but somewhat
formal evaluation. Letting Ar,s = ār,1 ⊗ a1,s , Br ′,s ′ = b̄r ′,1 ⊗ b1,s ′ , ār,1 ⊗ b̄r ′,1 = ⊕

r ′′ c̄r ′′,1 and
a1,s ⊗ b1,s ′ = ⊕

s ′′ c1,s ′′ , our fusion prescription yields

Ar,s ⊗ Br ′,s ′ = (ār,1 ⊗ a1,s) ⊗ (b̄r ′,1 ⊗ b1,s ′) = (ār,1 ⊗ b̄r ′,1) ⊗ (a1,s ⊗ b1,s ′)

=
(⊕

r ′′
c̄r ′′,1

)
⊗

(⊕
s ′′

c1,s ′′

)
=

⊕
r ′′,s ′′

Cr ′′,s ′′ , (4.4)

where Cr ′′,s ′′ = c̄r ′′,1 ⊗ c1,s ′′ . As already indicated, this way of evaluating the fusion of
two representations follows from the lattice description and will be used repeatedly in the
following.
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4.2. Decompositions of representations

The representations defined in (4.3) where a = 0, 1, . . . , p − 1 and b = 0, 1, . . . , p′ − 1 can
be decomposed as

Ra,b
pk,p′k′ =

k+k′−1⊕
j=|k−k′|+1,by 2

Ra,b
pj,p′ =

k+k′−1⊕
j=|k−k′|+1,by 2

Ra,b
p,p′j , (4.5)

with

Ra,b
pk,p′k′ = Ra,b

pk′,p′k (4.6)

as special identifications extending set (2.12). For critical percolation LM(2, 3), the
decompositions (4.5) and identifications (4.6) already appeared in [11], though without proof.
Here we establish, by induction in k and k′, that (4.5) is a consequence of our fusion rules for
general LM(p, p′). The induction start corresponds to

Ra,b
pm,p′ = Ra,b

p,p′m (4.7)

for m ∈ N, while the induction step amounts to establishing that if (4.5) is valid for
k = 1, 2, . . . , n and k′ = 1, 2, . . . , n′, then (4.5) is valid also for k = n + 1 and independently
for k′ = n′ + 1. It is noted that the second equality in (4.5) is an immediate consequence of
the induction start.

To establish (4.7), we use (2.12) and consider

(r, s) ⊗ (pm, p′) = (r, s) ⊗ (p, p′m), r = 1, 2, . . . , p; s = 1, 2, . . . , p′;m ∈ N.

(4.8)

Following the fusion prescription (4.4), the left-hand side reads

((r, 1) ⊗ (pm, 1)) ⊗ ((1, s) ⊗ (1, p′)) =
⎛
⎝

	 r−1
2 
⊕

i=0

Rr−1−2i,0
pm,1

⎞
⎠ ⊗

⎛
⎝

	 s−1
2 
⊕

i ′=0

R0,s−1−2i ′
1,p′

⎞
⎠

=
	 r−1

2 
⊕
i=0

	 s−1
2 
⊕

i ′=0

Rr−1−2i,s−1−2i ′
pm,p′ , (4.9)

while the right-hand side reads

((r, 1) ⊗ (p, 1)) ⊗ ((1, s) ⊗ (1, p′m)) =
	 r−1

2 
⊕
i=0

	 s−1
2 
⊕

i ′=0

Rr−1−2i,s−1−2i ′
p,p′m (4.10)

yielding

Rr−1,s−1
p,p′m � Rr−1,s−1

pm,p′ =
	 r−1

2 
⊕
i=1

	 s−1
2 
⊕

i ′=0

(
Rr−1−2i,s−1−2i ′

pm,p′ � Rr−1−2i,s−1−2i ′
p,p′m

)

⊕
	 r−1

2 
⊕
i=0

	 s−1
2 
⊕

i ′=1

(
Rr−1−2i,s−1−2i ′

pm,p′ � Rr−1−2i,s−1−2i ′
p,p′m

)
. (4.11)

Here and in the following, the notation A � B = C is equivalent to the direct-sum
decomposition A = B ⊕ C. The induction start (4.7) now follows by induction in � = a + b,
for example, where � = 0, 1, . . . , p + p′ − 2. Indeed, for � = 0 referring to the left-hand side,
equation (4.11) reduces to (2.12). For higher �, the right-hand side either vanishes or involves
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only terms with lower � values (of the form r + s − 2 − 2i − 2i ′) than the left-hand side where
� = r + s − 2, thereby completing the proof of the induction start (4.7).

To establish the induction step in k′, we use (4.7) and consider

Ra,b
pn,p′ ⊗ R0,1

1,p′n′ = Ra,b
p,p′n ⊗ R0,1

1,p′n′ . (4.12)

Since 1 � p < p′, the representation R0,1
1,p′n′ is well defined for all LM(p, p′). Again

employing our fusion prescription (4.4) and the component fusion rules of section 3, we find
that equality (4.12) implies that

0 =
⎧⎨
⎩Ra,b

pn,p′(n′+1) �
⎛
⎝ n+n′⊕

j=|n−n′−1|+1,by 2

Ra,b
p,p′j

⎞
⎠

⎫⎬
⎭

⊕
⎛
⎝

	 b
2 
⊕

i=1

2

⎧⎨
⎩Ra,b−2i

pn,p′(n′+1) �
⎛
⎝ n+n′⊕

j=|n−n′−1|+1,by 2

Ra,b−2i
p,p′j

⎞
⎠

⎫⎬
⎭

⎞
⎠

⊕
⎛
⎝

	 b
2 
⊕

i=0

(2 − δi,0)

⎧⎨
⎩Ra,b−2i

pn,p′(n′−1) �
⎛
⎝ n+n′−2⊕

j=|n−n′+1|+1,by 2

Ra,b−2i
p,p′j

⎞
⎠

⎫⎬
⎭

⎞
⎠

⊕

⎛
⎜⎝

	 p′−b

2 
⊕
i=0

(4 − 2δi,0)

⎧⎨
⎩Ra,p′−b−2i

pn,p′n′ �
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

Ra,p′−b−2i

p,p′j

⎞
⎠

⎫⎬
⎭

⎞
⎟⎠ . (4.13)

Here the third and fourth lines vanish by induction assumption. The induction step in k′

subsequently follows from (4.13) by induction in b in much the same way as the induction
start (4.7) followed from (4.11) by induction in � = a + b.

To establish the induction step in k, we first assume that p > 1 in which case the proof
goes as the proof of the induction step in k′, this time being based on the equality

Ra,b
p,p′n′ ⊗ R1,0

pn,1 = Ra,b
pn′,p′ ⊗ R1,0

pn,1 (4.14)

instead of (4.12). For p = 1, we simply have

R0,b
n,p′n′ = (n, 1) ⊗ R0,b

1,p′n′ = (n, 1) ⊗ R0,b
n′,p′ =

n+n′−1⊕
j=|n−n′ |+1,by 2

R0,b
j,p′ . (4.15)

This concludes the proof of the proposition that the decompositions (4.5) are direct
consequences of our fusion prescription.

4.3. Fundamental fusion algebra

Employing our fusion prescription (4.4), the fundamental fusion algebra 〈(2, 1), (1, 2)〉p,p′

now follows straightforwardly from the horizontal and vertical fusion algebras 〈(2, 1)〉p,p′

and 〈(1, 2)〉p,p′ described in section 3. Let us illustrate this by considering the fusion
Ra,b

pk,p′ ⊗ Ra′,b′
pk′,p′ , where a + a′ > p and b + b′ � p′, of two rank-3 indecomposable

representations

Ra,b
pk,p′ ⊗ Ra′,b′

pk′,p′ = (
Ra,0

pk,1 ⊗ Ra′,0
pk′,1

) ⊗ (
R0,b

1,p′ ⊗ R0,b′
1,p′

) = S(8) ⊕ S(4) ⊕ S(2) ⊕ S(0), (4.16)
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where

S(8) =

⎛
⎜⎝

k+k′+2⊕
j=|k−k′|−2,by 2

δ
(8)
j,{k,k′}

⎧⎪⎨
⎪⎩

	 a+a′−p−1
2 
⊕

i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 |b−b′ |−1
2 
⊕

i ′=0

Ra+a′−p−1−2i,|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 b+b′−1
2 
⊕

i ′=0

Ra+a′−p−1−2i,b+b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠ (4.17)

S(4) =

⎛
⎜⎝

k+k′+1⊕
j=|k−k′|−1,by 2

2δ
(4)
j,{k,k′}

⎧⎪⎨
⎪⎩

	 a+a′−p−1
2 
⊕

i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 p′−|b−b′ |−1
2 
⊕

i ′=0

Ra+a′−p−1−2i,p′−|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 p′−b−b′−1
2 
⊕

i ′=0

Ra+a′−p−1−2i,p′−b−b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⊕

⎛
⎜⎝

k+k′+1⊕
j=|k−k′|−1,by 2

δ
(4)
j,{k,k′}

⎧⎪⎨
⎪⎩

	 |a−a′ |−1
2 
⊕

i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 |b−b′ |−1
2 
⊕

i ′=0

R|a−a′|−1−2i,|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 b+b′−1
2 
⊕

i ′=0

R|a−a′|−1−2i,b+b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⊕

⎛
⎜⎝

k+k′+1⊕
j=|k−k′|−1,by 2

δ
(4)
j,{k,k′}

⎧⎪⎨
⎪⎩

	 2p−a−a′−1
2 
⊕

i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 |b−b′ |−1
2 
⊕

i ′=0

R2p−a−a′−1−2i,|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 b+b′−1
2 
⊕

i ′=0

R2p−a−a′−1−2i,b+b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠ (4.18)

S(2) =

⎛
⎜⎝

k+k′⊕
j=|k−k′|,by 2

2δ
(2)
j,{k,k′}

⎧⎪⎨
⎪⎩

	 |a−a′ |−1
2 
⊕

i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 p′−|b−b′ |−1
2 
⊕

i ′=0

R|a−a′|−1−2i,p′−|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 p′−b−b′−1
2 
⊕

i ′=0

R|a−a′|−1−2i,p′−b−b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⊕

⎛
⎜⎝

k+k′⊕
j=|k−k′|,by 2

2δ
(2)
j,{k,k′}

⎧⎪⎨
⎪⎩

	 2p−a−a′−1
2 
⊕

i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 p′−|b−b′ |−1
2 
⊕

i ′=0

R2p−a−a′−1−2i,p′−|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 p′−b−b′−1
2 
⊕

i ′=0

R2p−a−a′−1−2i,p′−b−b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠
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⊕

⎛
⎜⎝

k+k′⊕
j=|k−k′|,by 2

2δ
(2)
j,{k,k′}

⎧⎪⎨
⎪⎩

p−max{a,a′}−1⊕
i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 |b−b′ |−1
2 
⊕

i ′=0

Rp−|a−a′ |−1−2i,|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 b+b′−1
2 
⊕

i ′=0

Rp−|a−a′ |−1−2i,b+b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠ (4.19)

and

S(0) =

⎛
⎜⎝

k+k′−1⊕
j=|k−k′|+1,by 2

4

⎧⎪⎨
⎪⎩

p−max{a,a′}−1⊕
i=0

⎛
⎜⎝

⎧⎪⎨
⎪⎩

	 p′−|b−b′ |−1
2 
⊕

i ′=0

Rp−|a−a′ |−1−2i,p′−|b−b′ |−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⊕

⎧⎪⎨
⎪⎩

	 p′−b−b′−1
2 
⊕

i ′=0

Rp−|a−a′ |−1−2i,p′−b−b′−1−2i ′
pj,p′

⎫⎪⎬
⎪⎭

⎞
⎟⎠

⎫⎪⎬
⎪⎭

⎞
⎟⎠ . (4.20)

Depending on the relations between the various parameters, expression (4.16) can of course
be simplified.

The Kac representation (1, 1) is the identity of the fundamental fusion algebra of
LM(p, p′). To see this, we first argue that (1, 1) is indeed generated by successive fusion
of the fundamental Kac representations (2, 1) and (1, 2). For p′ > 2, this follows from
the fundamental fusion (1, 2) ⊗ (1, 2) = (1, 1) ⊕ (1, 3), while for p′ = 2 (in which case
p = 1), it follows from the fundamental fusion (2, 1) ⊗ (2, 1) = (1, 1) ⊕ (3, 1). Letting X
denote any representation in the algebra, it is easily verified, using the explicit fusion rules for
the fundamental component fusion algebras in section 3, that (1, 1) ⊗ X = X, hence (1, 1)

is the identity with respect to fusion. It is also noted that identity (1, 1) is an irreducible
representation for p = 1 but a reducible yet indecomposable representation of rank 1 for
p > 1.

The fundamental fusion algebra of critical percolation LM(2, 3) was considered in [11]
and found to reproduce the many explicit examples of fusion rules for the augmented c2,3

model appearing in [4]. After discussing an underlying s�(2) structure of our fusion rules,
we provide details on the fundamental fusion algebras of the infinite sequence of logarithmic
minimal models LM(1, p′), the logarithmic Yang–Lee model LM(2, 5) and the logarithmic
Ising model LM(3, 4). The results for LM(1, p′) and LM(2, 5) are subsequently compared
with the fusion rules of the corresponding augmented cp,p′ models appearing in the literature
[1, 4].

4.4. s�(2) structure

We wish to point out that, at the level of Kac characters, the horizontal, vertical and fundamental
fusion algebras are all compatible with the s�(2) structure

φn ⊗ φn′ =
n+n′−1⊕

m=|n−n′ |+1,by 2

φm. (4.21)

This is straightforward to establish for the horizontal and vertical fusion algebras. Let us
illustrate this by considering the relatively complicated horizontal fusion Ra,0

pk,1 ⊗ Ra′,0
pk′,1 for

a + a′ > p, where (4.21) gives
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χ
[
Ra,0

pk,1 ⊗ Ra′,0
pk′,1

]
(q) = χ [((pk − a, 1) ⊕ (pk + a, 1)) ⊗ ((pk′ − a′, 1) ⊕ (pk′ + a′, 1))](q)

= χ [(pk − a, 1) ⊗ (pk′ − a′, 1)](q) + χ [(pk − a, 1)

⊗ (pk′ + a′, 1)](q) + χ [(pk + a, 1) ⊗ (pk′ − a′, 1)](q)

+ χ [(pk + a, 1) ⊗ (pk′ + a′, 1)](q)

=
p(k+k′)−a−a′−1∑

j=|pk−pk′−a+a′|+1,by 2

χj,1(q) +
p(k+k′)−a+a′−1∑

j=|pk−pk′−a−a′ |+1,by 2

χj,1(q)

+
p(k+k′)+a−a′−1∑

j=|pk−pk′+a+a′ |+1,by 2

χj,1(q) +
p(k+k′)+a+a′−1∑

j=|pk−pk′+a−a′ |+1,by 2

χj,1(q), (4.22)

while (3.10) yields

χ
[
Ra,0

pk,1 ⊗ Ra′,0
pk′,1

]
(q)

=
k+k′+1∑

j=|k−k′|−1,by 2

δ
(4)
j,{k,k′}

	 a+a′−p−1
2 
∑

i=0

(χp(j+1)−a−a′+1+2i,1(q) + χp(j−1)+a+a′−1−2i,1(q))

+
k+k′∑

j=|k−k′|,by 2

δ
(2)
j,{k,k′}

	 |a−a′ |−1
2 
∑

i=0

(χpj−|a−a′ |+1+2i,1(q) + χpj+|a−a′ |−1−2i,1(q))

+
k+k′∑

j=|k−k′|,by 2

δ
(2)
j,{k,k′}

	 2p−a−a′−1
2 
∑

i=0

(χp(j−2)+a+a′+1+2i,1(q) + χp(j+2)−a−a′−1−2i,1(q))

+ 2
k+k′−1∑

j=|k−k′ |+1,by 2

p−max{a,a′}−1∑
i=0

(χp(j−1)+|a−a′ |+1+2i,1(q) + χp(j+1)−|a−a′ |−1−2i,1(q)).

(4.23)

It is straightforward to verify the equality of the two character expressions (4.22) and (4.23).
The separation into horizontal and vertical parts then implies that the characters of the
fundamental fusion algebra exhibit two independent s�(2) structures as in (4.21)—one in
each direction. This is clearly reminiscent of the fusion algebras of rational (minimal) models
where the s�(2) structures are carried by the (characters of the) irreducible representations.
Here, on the other hand, the s�(2) structures are tied to the Kac representations but, due to
the higher rank indecomposable nature of some other representations, only at the level of their
characters.

4.5. Critical dense polymers LM(1, 2) and general LM(1, p′)

In the case of LM(1, p′), no indecomposable representation of rank 3 arises when combining
the horizontal fusion algebra

〈(2, 1)〉1,p′ = 〈(r, 1); r ∈ N〉1,p′ , (4.24)

with the vertical fusion algebra

〈(1, 2)〉1,p′ = 〈
(1, s0), (1, kp′),R0,b

1,kp′ ; s0, b = 1, 2, . . . , p′ − 1; k ∈ N
〉
1,p′ . (4.25)

The only new representations generated by the merge are the irreducible Kac representations
(r, s0) with 1 < s0 < p′ as we have

〈(2, 1), (1, 2)〉1,p′ = 〈
(r, s0), (1, kp′),R0,b

1,kp′ ; s0, b = 1, 2, . . . , p′ − 1; r, k ∈ N
〉
1,p′ . (4.26)
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This means, in particular, that the fundamental fusion algebra of LM(1, p′) follows almost
trivially from the fundamental component fusion algebra of order p′. In the special case of
critical dense polymers LM(1, 2), we thus have〈

(2, 1), (1, 2)
〉
1,2 = 〈

(r, 1), (1, 2k),R0,1
1,2k; r, k ∈ N

〉
1,2, (4.27)

with fusion rules

(r, 1) ⊗ (r ′, 1) =
r+r ′−1⊕

j=|r−r ′ |+1,by 2

(j, 1)

(r, 1) ⊗ (1, 2k) =
r+k−1⊕

j=|r−k|+1,by 2

(1, 2j)

(r, 1) ⊗ R0,1
1,2k =

r+k−1⊕
j=|r−k|+1,by 2

R0,1
1,2j (4.28)

(1, 2k) ⊗ (1, 2k′) =
k+k′−1⊕

j=|k−k′|+1,by 2

R0,1
1,2j

(1, 2k) ⊗ R0,1
1,2k′ =

k+k′⊕
j=|k−k′|

δ
(2)
j,{k,k′}(1, 2j)

R0,1
1,2k ⊗ R0,1

1,2k′ =
k+k′⊕

j=|k−k′|
δ

(2)
j,{k,k′}R

0,1
1,2j .

In [1], Gaberdiel and Kausch performed the first systematic analysis of the fusion algebra
of the augmented c1,p′ models by application of the Nahm algorithm [5]. Based on this, they
presented explicit conjectures for the fusion algebras of the augmented c1,2 and c1,3 models in
addition to a couple of conjectures for fusion rules for p′ > 3. To facilitate a comparison of
our results with theirs, we provide a dictionary for translating the representations generating
the fundamental fusion algebra of LM(1, p′) (4.26) into the notation used in [1]

p′ ←→ t

(r, s0) ←→ Vr,s0 , s0 = 1, 2, . . . , p′ − 1

(1, kp′) = (k, p′) ←→ Vk,t

R0,b
1,kp′ ←→ Rk,t−b, b = 1, 2, . . . , p′ − 1,

(4.29)

where r, k ∈ N. It is readily verified that our fusion rules extend and complete the ones by
Gaberdiel and Kausch. In particular, the fusion rules (4.28) for critical dense polymers agree
exactly with the similar rules in [1].

4.6. Logarithmic Yang–Lee model LM(2, 5)

The fundamental fusion algebra of the logarithmic Yang–Lee model LM(2, 5) is obtained by
combining a fundamental component fusion algebra of order 2 with a fundamental component
fusion algebra of order 5. According to (4.1), closure of the fusion algebra requires〈
(2, 1), (1, 2)

〉
2,5 = 〈

(1, s0), (2k, s0), (1, 5k), (2k, 5),R1,0
2k,s0

,R1,0
2k,5,R

0,b
1,5k,R

0,b
2,5kR

1,b
2k,5

〉
2,5,

(4.30)

where s0, b = 1, 2, 3, 4, whereas k ∈ N.
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We have already employed our fusion prescription in several examples but let us
nevertheless illustrate its usability again by considering the fusionsR1,0

2,3⊗R0,3
4,5 and (1, 4)⊗R1,3

8,5
in detail. We find

R1,0
2,3 ⊗ R0,3

4,5 = (
R1,0

2,1 ⊗ (4, 1)
) ⊗ (

(1, 3) ⊗ R0,3
1,5

)
= (

(2, 1) ⊕ 2(4, 1) ⊕ (6, 1)
) ⊗ (

R0,1
1,5 ⊕ R0,3

1,5 ⊕ (1, 10)
)

= R0,1
2,5 ⊕ R0,3

2,5 ⊕ 2R0,1
2,10 ⊕ 2R0,3

2,10 ⊕ R0,1
2,15

⊕ R0,3
2,15 ⊕ 2(2, 5) ⊕ 2(4, 5) ⊕ 2(6, 5) ⊕ (8, 5) (4.31)

and

(1, 4) ⊗ R1,3
8,5 = R1,0

8,1 ⊗ (
(1, 4) ⊗ R0,3

1,5

) = R1,0
8,1 ⊗ (

2(1, 5) ⊕ R0,2
1,5 ⊕ R0,1

1,10

)
= R1,1

6,5 ⊕ 2R1,0
8,5 ⊕ R1,2

8,5 ⊕ R1,1
10,5. (4.32)

We now compare our fusion rules for the logarithmic Yang–Lee model LM(2, 5) with
the examples of fusions in the augmented c2,5 model considered recently by Eberle and Flohr
[4]. To facilitate such a comparison, we provide a partial dictionary relating our notation to
the one used in [4]. In the orders specified, the translation reads

{(2k, s), (1, 5k)} ←→ {V(�2k,s),V(�1,5k)}, s = 1, 2, 3, 4, 5; k ∈ N

{(1, 1), (1, 2), (1, 3), (1, 4)} ←→ {R(1)(0)4,R(1)(−1/5)3,R(1)(−1/5)2,R(1)(0)1}{
R1,0

2,1,R
1,0
2,2,R

1,0
2,3,R

1,0
2,4,R

1,0
2,5

} ←→ {R(2)(0, 4)13,R(2)(−1/5, 14/5)11,R(2)(−1/5, 9/5)9,

R(2)(0, 1)7,R(2)(2/5, 2/5)}{
R0,1

1,5,R
0,2
1,5,R

0,3
1,5,R

0,4
1,5

} ←→ {R(2)(0, 1)13,R(2)(−1/5, 9/5)11,

R(2)(−1/5, 14/5)9,R(2)(0, 4)7}{
R0,1

2,5,R
0,2
2,5,R

0,3
2,5,R

0,4
2,5

} ←→ {R(2)(−1/8,−1/8),R(2)(7/40, 7/40),

R(2)(27/40, 27/40),R(2)(11/8, 11/8)
}

{
R1,1

2,5,R
1,2
2,5,R

1,3
2,5,R

1,4
2,5

} ←→ {R(3)(0, 0, 1, 1),R(3)(−1/5,−1/5, 9/5, 9/5),

R(3)(−1/5,−1/5, 14/5, 14/5),R(3)(0, 0, 4, 4)}. (4.33)

We find that our fusion rules reproduce the many explicit examples considered in [4]. As our
rules are general, the fusions of the four indecomposable representations of rank 3 appearing
in the dictionary (4.33) are easily worked out to be

R1,1
2,5 ⊗ R1,1

2,5 = 8R1,0
2,5 ⊕ R1,1

2,5 ⊕ 8R1,2
2,5 ⊕ 4R1,4

2,5 ⊕ 4R1,0
4,5 ⊕ 2R1,1

4,5 ⊕ 4R1,2
4,5 ⊕ 2R1,4

4,5 ⊕ R1,1
6,5

R1,1
2,5 ⊗ R1,2

2,5 = 2R1,0
2,5 ⊕ 8R1,1

2,5 ⊕ R1,2
2,5 ⊕ 4R1,3

2,5 ⊕ 4R1,0
4,5 ⊕ 4R1,1

4,5 ⊕ 2R1,2
4,5 ⊕ 2R1,3

4,5

⊕ 2R1,0
6,5 ⊕ R1,2

6,5

R1,1
2,5 ⊗ R1,3

2,5 = 8R1,0
2,5 ⊕ 2R1,1

2,5 ⊕ 4R1,2
2,5 ⊕ R1,3

2,5 ⊕ 4R1,0
4,5 ⊕ 4R1,1

4,5 ⊕ 2R1,2
4,5 ⊕ 2R1,3

4,5

⊕ 2R1,1
6,5 ⊕ R1,3

6,5

R1,1
2,5 ⊗ R1,4

2,5 = 2R1,0
2,5 ⊕ 4R1,1

2,5 ⊕ 2R1,2
2,5 ⊕ R1,4

2,5 ⊕ 4R1,0
4,5 ⊕ 2R1,1

4,5 ⊕ 4R1,2
4,5 ⊕ 2R1,4

4,5

⊕ 2R1,0
6,5 ⊕ 2R1,2

6,5 ⊕ R1,4
6,5

R1,2
2,5 ⊗ R1,2

2,5 = 8R1,0
2,5 ⊕ R1,1

2,5 ⊕ 4R1,2
2,5 ⊕ R1,3

2,5 ⊕ 4R1,4
2,5 ⊕ 4R1,0

4,5 ⊕ 2R1,1
4,5 ⊕ 2R1,2

4,5 ⊕ 2R1,3
4,5

⊕ 2R1,4
4,5 ⊕ R1,1

6,5 ⊕ R1,3
6,5

R1,2
2,5 ⊗ R1,3

2,5 = 2R1,0
2,5 ⊕ 4R1,1

2,5 ⊕ R1,2
2,5 ⊕ 4R1,3

2,5 ⊕ R1,4
2,5 ⊕ 4R1,0

4,5 ⊕ 2R1,1
4,5 ⊕ 2R1,2

4,5 ⊕ 2R1,3
4,5
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⊕ 2R1,4
4,5 ⊕ 2R1,0

6,5 ⊕ R1,2
6,5 ⊕ R1,4

6,5

R1,2
2,5 ⊗ R1,4

2,5 = 2R1,0
2,5 ⊕ 2R1,1

2,5 ⊕ 4R1,2
2,5 ⊕ R1,3

2,5 ⊕ 2R1,0
4,5 ⊕ 4R1,1

4,5 ⊕ 2R1,2
4,5 ⊕ 2R1,3

4,5

⊕ 2R1,0
6,5 ⊕ 2R1,1

6,5 ⊕ R1,3
6,5 ⊕ R1,0

8,5

R1,3
2,5 ⊗ R1,3

2,5 = 2R1,0
2,5 ⊕ R1,1

2,5 ⊕ 4R1,2
2,5 ⊕ R1,3

2,5 ⊕ 4R1,4
2,5 ⊕ 2R1,0

4,5 ⊕ 2R1,1
4,5 ⊕ 2R1,2

4,5

⊕ 2R1,3
4,5 ⊕ 2R1,4

4,5 ⊕ 2R1,0
6,5 ⊕ R1,1

6,5 ⊕ R1,3
6,5 ⊕ R1,0

8,5

R1,3
2,5 ⊗ R1,4

2,5 = 2R1,0
2,5 ⊕ 2R1,1

2,5 ⊕ R1,2
2,5 ⊕ 4R1,3

2,5 ⊕ 4R1,0
4,5 ⊕ 2R1,1

4,5 ⊕ 2R1,2
4,5 ⊕ 2R1,3

4,5

⊕ 2R1,0
6,5 ⊕ 2R1,1

6,5 ⊕ R1,2
6,5 ⊕ R1,1

8,5

R1,4
2,5 ⊗ R1,4

2,5 = 2R1,0
2,5 ⊕ R1,1

2,5 ⊕ 2R1,2
2,5 ⊕ 4R1,4

2,5 ⊕ 2R1,0
4,5 ⊕ 2R1,1

4,5 ⊕ R1,2
4,5 ⊕ 2R1,4

4,5

⊕ 2R1,0
6,5 ⊕ R1,1

6,5 ⊕ 2R1,2
6,5 ⊕ R1,0

8,5 ⊕ R1,2
8,5. (4.34)

As (4.31) and (4.32), these explicit fusions were not considered in [4].

4.7. Logarithmic Ising model LM(3, 4) and beyond

The fundamental fusion algebra of the logarithmic Ising model LM(3, 4) is obtained by
combining a fundamental component fusion algebra of order 3 with a fundamental component
fusion algebra of order 4. According to (4.1), closure of the fusion algebra requires

〈(2, 1), (1, 2)〉3,4 = 〈
(r0, s0), (3k, s0), (r0, 4k), (3k, 4),Ra,0

3k,s0
,Ra,0

3k,4,R
0,b
r0,4k,R

0,b
3,4kR

a,b
3k,4

〉
3,4,

(4.35)

where r0, a = 1, 2 and s0, b = 1, 2, 3, whereas k ∈ N. Writing out the complete set of fusion
rules is cumbersome and does not provide any new insight over the general fusion prescription
given above. Here we therefore only present simplifications of the inequivalent fusions of the
type (4.16) where we find

R2,1
3k,4 ⊗ R2,1

3k′,4 =
⎛
⎝ k+k′+2⊕

j=|k−k′|−2,by 2

δ
(8)
j,{k,k′}R

0,1
3j,4

⎞
⎠

⊕
⎛
⎝ k+k′+1⊕

j=|k−k′|−1,by 2

δ
(4)
j,{k,k′}

(
4R0,1

3j,4 ⊕ 2R0,3
3j,4 ⊕ R1,1

3j,4

)⎞⎠

⊕
⎛
⎝ k+k′⊕

j=|k−k′|,by 2

2δ
(2)
j,{k,k′}

(
2R1,1

3j,4 ⊕ R1,3
3j,4 ⊕ R2,1

3j,4

)⎞⎠

⊕
⎛
⎝ k+k′−1⊕

j=|k−k′|+1,by 2

4
(
2R2,1

3j,4 ⊕ R2,3
3j,4

)⎞⎠ (4.36)

R2,1
3k,4 ⊗ R2,2

3k′,4 =
⎛
⎝ k+k′+2⊕

j=|k−k′|−2

δ
(8)
j,{k,k′}

(
2R0,0

3j,4 ⊕ R0,2
3j,4

)⎞⎠

⊕
⎛
⎝ k+k′+1⊕

j=|k−k′|−1

δ
(4)
j,{k,k′}

(
2R1,0

3j,4 ⊕ R1,2
3j,4

)⎞
⎠
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⊕
⎛
⎝ k+k′⊕

j=|k−k′|
2δ

(2)
j,{k,k′}

(
2R2,0

3j,4 ⊕ R2,2
3j,4

)⎞⎠ (4.37)

R2,1
3k,4 ⊗ R2,3

3k′,4 =
⎛
⎝ k+k′+2⊕

j=|k−k′|−2,by 2

δ
(8)
j,{k,k′}

(
2R0,1

3j,4 ⊕ R0,3
3j,4

)⎞⎠

⊕
⎛
⎝ k+k′+1⊕

j=|k−k′|−1,by 2

δ
(4)
j,{k,k′}

(
2R0,1

3j,4 ⊕ 2R1,1
3j,4 ⊕ R1,3

3j,4

)⎞⎠

⊕
⎛
⎝ k+k′⊕

j=|k−k′|,by 2

2δ
(2)
j,{k,k′}

(
R1,1

3j,4 ⊕ 2R2,1
3j,4 ⊕ R2,3

3j,4

)⎞⎠ ⊕
⎛
⎝ k+k′−1⊕

j=|k−k′|+1,by 2

4R2,1
3j,4

⎞
⎠

(4.38)

and

R2,2
3k,4 ⊗ R2,2

3k′,4 =
⎛
⎝ k+k′+2⊕

j=|k−k′|−2

δ
(8)
j,{k,k′}

(
2R0,1

3j,4 ⊕ R0,3
3j,4

)⎞⎠

⊕
⎛
⎝ k+k′+1⊕

j=|k−k′|−1

δ
(4)
j,{k,k′}

(
2R1,1

3j,4 ⊕ R1,3
3j,4

)⎞⎠

⊕
⎛
⎝ k+k′⊕

j=|k−k′|
2δ

(2)
j,{k,k′}

(
2R2,1

3j,4 ⊕ R2,3
3j,4

)⎞⎠ . (4.39)

It is noted that only some of the direct sums appearing in these expressions are in steps of 2.
The main new feature associated with the fundamental fusion algebras of the logarithmic

minimal models LM(p, p′) for p > 3 compared to the properties already encountered in the
various models above with p = 1, 2, 3 is the appearance of indecomposable representations
of rank 3 as the result of fusion of two reducible Kac representations. This occurs in the fusion
of (r0, s0) and (r ′

0, s
′
0) if and only if r0 + r ′

0 > p + 1 and s0 + s ′
0 > p′ + 1 (which indeed requires

p > 3 since r0, r
′
0 < p). In this case, we have

(r0, s0) ⊗ (r ′
0, s

′
0) =

⎛
⎝ 2p−r0−r ′

0−1⊕
j=|r0−r ′

0|+1,by 2

2p′−s0−s ′
0−1⊕

j ′=|s0−s ′
0|+1,by 2

(j, j ′)

⎞
⎠

⊕

⎛
⎜⎝

2p−r0−r ′
0−1⊕

j=|r0−r ′
0|+1,by 2

	 s0+s′0−p′−1

2 
⊕
i ′=1

R0,s0+s ′
0−p′−1−2i ′

j,p′

⎞
⎟⎠

⊕

⎛
⎜⎝

	 r0+r′0−p−1

2 
⊕
i=1

2p′−s0−s ′
0−1⊕

j ′=|s0−s ′
0|+1,by 2

Rr0+r ′
0−p−1−2i,0

p,j ′

⎞
⎟⎠

⊕

⎛
⎜⎝

	 r0+r′0−p−1

2 
⊕
i=1

	 s0+s′0−p′−1

2 
⊕
i ′=1

Rr0+r ′
0−p−1−2i,s0+s ′

0−p′−1−2i ′

p,p′

⎞
⎟⎠ , (4.40)



Fusion algebras of logarithmic minimal models 13729

where the last line corresponds to a non-vanishing direct sum of indecomposable
representations of rank 3.

It would of course be interesting to compare our fusion rules for the logarithmic Ising
model LM(3, 4), in particular, with the fusion rules obtained by application of the Nahm
algorithm [5] to the augmented c3,4 model along the lines of [1, 4]. If affirmative, such a
comparison would provide further evidence to support the supposition that the augmented
cp,p′ model and the logarithmic minimal model LM(p, p′) are equivalent.

5. Conclusion

We have presented explicit conjectures for the chiral fundamental fusion algebras of the
logarithmic minimal models LM(p, p′). The fusion rules are quasi-rational [5] in the
sense that the fusion of a finite number of representations decomposes into a finite direct
sum of representations. The fusion rules are also commutative, associative and exhibit
an s�(2) structure. Detailed comparisons of our fusion rules have shown agreement with
the previous results of Gaberdiel and Kausch for p = 1 and with Eberle and Flohr for
(p, p′) = (2, 3), (2, 5) corresponding to critical percolation (where the explicit comparison
was carried out in [11]) and the logarithmic Yang–Lee model, respectively. In the latter
cases, we confirm that indecomposable representations of rank 3 arise as the result of
certain lower-rank fusions. We also find that closure of a fundamental fusion algebra is
achieved without the introduction of indecomposable representations of rank higher than 3.
In general, the identity of the fundamental fusion algebra of LM(p, p′) is a reducible yet
indecomposable Kac representation of rank 1. The conjectured fusion rules are supported,
within our lattice approach introduced in [8], by extensive numerical studies of the associated
integrable lattice models. Details of our lattice findings and numerical results will be presented
elsewhere. Importantly, the agreement of our results with previous results from the algebraic
approach lends considerable support for the supposition that the logarithmic CFTs cp,p′

and LM(p, p′) should be identified. Finally, we intend to consider the full fusion algebra〈
(2, 1), (p + 1, 1), (1, 2), (1, p′ + 1)

〉
p,p′ of LM(p, p′) elsewhere. It contains the fundamental

fusion algebra
〈
(2, 1), (1, 2)

〉
p,p′ as a subalgebra and is ‘full’ in the sense that it involves all

Kac representations (r, s) where r, s ∈ N.
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Appendix A. Component fusion algebras of low order

For given order p = 1, 2, 3, 4, 5, focus here is on the fusion algebra generated by{
Ra

pn; a = 0, 1, . . . , p − 1
}
, that is, on the subalgebra of the fundamental component fusion

algebra generated by all representations but the reducible yet indecomposable representations
of rank 1.

Order p = 1

R0
n ⊗ R0

n′ =
n+n′−1⊕

j=|n−n′ |+1,by 2

R0
j . (A.1)
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Order p = 2

R0
2n ⊗ R0

2n′ =
n+n′−1⊕

j=|n−n′ |+1,by 2

R1
2j

R0
2n ⊗ R1

2n′ =
n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R0

2j (A.2)

R1
2n ⊗ R1

2n′ =
n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R1

2j . (A.3)

Order p = 3

R0
3n ⊗ R0

3j =
n+n′−1⊕

j=|n−n′ |+1,by 2

(
R2

3j ⊕ R0
3j

)

R0
3n ⊗ R1

3n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R0

3j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R1
3j

⎞
⎠

R0
3n ⊗ R2

3n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

3j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R0
3j

⎞
⎠

(A.4)

R1
3n ⊗ R1

3n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

3j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
2R2

3j ⊕ 4R0
3j

)⎞⎠
(A.5)

R1
3n ⊗ R2

3n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
R2

3j ⊕ 2R0
3j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R1
3j

⎞
⎠

R2
3n ⊗ R2

3n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}R0

3j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

3j

⎞
⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R2
3j

⎞
⎠ . (A.6)

Order p = 4

R0
4n ⊗ R0

4n′ =
n+n′−1⊕

j=|n−n′ |+1,by 2

(
R1

4j ⊕ R3
4j

)

R0
4n ⊗ R1

4n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R0

4j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R2
4j

⎞
⎠

(A.7)

R0
4n ⊗ R2

4n′ =
n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R1

4j

R0
4n ⊗ R3

4n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R0

4j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R2

4j

⎞
⎠
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R1
4n ⊗ R1

4n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R1

4j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
2R1

4j ⊕ 2R3
4j

)⎞⎠

R1
4n ⊗ R2

4n′ =
n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}

(
2R0

4j ⊕ R2
4j

)

R1
4n ⊗ R3

4n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R1

4j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
R1

4j ⊕ R3
4j

)⎞⎠

(A.8)

R2
4n ⊗ R2

4n′ =
n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}

(
R1

4j ⊕ R3
4j

)

R2
4n ⊗ R3

4n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1

δ
(4)
j,{n,n′}R0

4j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |
δ

(2)
j,{n,n′}R2

4j

⎞
⎠

(A.9)

R3
4n ⊗ R3

4n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}R1

4j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

4j

⎞
⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R3
4j

⎞
⎠ . (A.10)

Order p = 5

R0
5n ⊗ R0

5n′ =
n+n′−1⊕

j=|n−n′ |+1,by 2

(
R0

5j ⊕ R2
5j ⊕ R4

5j

)

R0
5n ⊗ R1

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R0

5j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
2R1

5j ⊕ 2R3
5j

)⎞⎠

R0
5n ⊗ R2

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

5j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
2R0

5j ⊕ 2R2
5j

)⎞⎠ (A.11)

R0
5n ⊗ R3

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
R0

5j ⊕ R2
5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R1
5j

⎞
⎠

R0
5n ⊗ R4

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
R1

5j ⊕ R3
5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R0
5j

⎞
⎠

R1
5n ⊗ R1

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

5j

⎞
⎠ ⊕

⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
4R0

5j ⊕ 4R2
5j ⊕ 2R4

5j

)⎞⎠

R1
5n ⊗ R2

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
2R0

5j ⊕ R2
5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
4R1

5j ⊕ 2R3
5j

)⎞⎠
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R1
5n ⊗ R3

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
2R1

5j ⊕ R3
5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
4R0

5j ⊕ 2R2
5j

)⎞⎠

R1
5n ⊗ R4

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
2R0

5j ⊕ 2R2
5j ⊕ R4

5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R1
5j

⎞
⎠

(A.12)

R2
5n ⊗ R2

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
R1

5j ⊕ R3
5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
4R0

5j ⊕ 2R2
5j ⊕ 2R4

5j

)⎞⎠

R2
5n ⊗ R3

5n′ =
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
2R0

5j ⊕ R2
5j ⊕ R4

5j

)⎞⎠ ⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
2R1

5j ⊕ 2R3
5j

)⎞⎠

R2
5n ⊗ R4

5n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}R0

5j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
2R1

5j ⊕ R3
5j

)⎞⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R2
5j

⎞
⎠ (A.13)

R3
5n ⊗ R3

5n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}R0

5j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
R1

5j ⊕ R3
5j

)⎞⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

(
2R2

5j ⊕ 2R4
5j

)⎞⎠

R3
5n ⊗ R4

5n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}R1

5j

⎞
⎠ ⊕

⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}

(
2R0

5j ⊕ R2
5j

)⎞⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R3
5j

⎞
⎠ (A.14)

R4
5n ⊗ R4

5n′ =
⎛
⎝ n+n′+1⊕

j=|n−n′ |−1,by 2

δ
(4)
j,{n,n′}

(
R0

5j ⊕ R2
5j

)⎞⎠ ⊕
⎛
⎝ n+n′⊕

j=|n−n′ |,by 2

δ
(2)
j,{n,n′}R1

5j

⎞
⎠

⊕
⎛
⎝ n+n′−1⊕

j=|n−n′ |+1,by 2

2R4
5j

⎞
⎠ . (A.15)
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